Q2 (a) If z be a homogeneous function of degree n, show that

$$
x \frac{\partial^{2} z}{\partial x \cdot \partial y}+y \frac{\partial^{2} z}{\partial y^{2}}=(n-1) \frac{\partial z}{\partial y}
$$

Answer
Som: Qre2an
B) Enere's Thereem

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z \text { (i) }
$$

Differentiating (1), pantaily w.r.t. ' x ', we eqet

$$
\begin{aligned}
& \frac{\partial z}{\partial x}+x \cdot \frac{\partial^{2} z}{\partial x^{2}}+y \cdot \frac{\partial^{2} z}{\partial x \cdot \partial y}=n \frac{\partial z}{\partial x} \\
& \text { or } x \cdot \frac{\partial^{2} z}{\partial x^{2}}+y \cdot \frac{\partial^{2}}{\partial x \cdot \partial y}=(n-1) \frac{\partial z}{\partial x}
\end{aligned}
$$

Answer
2.b. Som

$$
\begin{align*}
x & =e^{u} \cos v, \quad y=e^{u} \sin v \\
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& =\frac{\partial z}{\partial x} e^{u} \cos v+\frac{\partial z}{\partial y} e^{u} \sin v \\
& =x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y} \\
y \frac{\partial z}{\partial u} & =x y \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y} \tag{i}\\
\text { and } \frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
& =\frac{\partial z}{\partial x}\left(-e^{u} \sin v\right)+\frac{\partial z}{\partial y}\left(e^{u} \cos v\right) \\
& =-y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y} \\
x \frac{\partial z}{\partial v} & =-x y \frac{\partial z}{\partial x}+x^{2} \frac{\partial z}{\partial y} \tag{i1}
\end{align*}
$$

on adding (i) and (ii), we get

$$
\begin{aligned}
y \frac{\partial z}{\partial u}+x \frac{\partial z}{\partial v} & =\left(x^{2}+y^{2}\right) \frac{\partial z}{\partial y} \\
& =\left(e^{2 u} \cos ^{2} v+e^{2 u} \sin ^{2} v\right) \frac{\partial z}{\partial y} \\
& =e^{2 u}\left(\cos ^{2} v+\sin ^{2} v\right) \cdot \frac{\partial z}{\partial y} \\
& =e^{2 u} \frac{\partial z}{\partial y} \quad \text { Hence fronds }
\end{aligned}
$$

Q3 (a) Change the order of integration and then evaluate $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$

Answer

Q3.a Som
$I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$
The region of integration n shown x^{\prime}
by shaded portion in the figure
banded by parabola $y=x^{2}$ and the line $y=2-x$
The point of intersection of the parabola $y=x^{2}$ and the line $y=2-x$ is $(1,1)$.

In the fig. we have taken a strip parallel to y-axis and the order of integration $n \int_{0}^{1} x d x \int_{x^{2}}^{2-x} y d x$ In the second figure we have acer a strip parallel to x-axis in
the area $O B C$ and second strip in
the area $A B C$.
The limits of x intwarea $O B C$
re 0 and \sqrt{y} and the limit of x in
the area $A B C$ are 0 and $2-y$

So, the given integral n

$$
\begin{aligned}
& \text { given integral } n \\
& =\int_{0}^{1} y d y \int_{0}^{\sqrt{y}} x d x+\int_{1}^{2} y d y \int_{0}^{2-y} x d x \\
& =\int_{0}^{1} y d y\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{y}}+\int_{1}^{2} y d y\left[\frac{x^{2}}{2}\right]_{0}^{2-y} \\
& =\frac{1}{2} \int_{0}^{1} y^{2} d y+\frac{1}{2} \int_{1}^{2} y(2-y)^{2} d y \\
& =\frac{1}{2}\left[\frac{y^{3}}{3}\right]_{0}^{1}+\frac{1}{2} \int_{1}^{2}\left(4 y-4 y^{2}+y^{3}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{3}\right]_{0} \\
& =\frac{1}{6}+\frac{1}{2}\left[2 y-\frac{4}{3} y^{3}+\frac{y^{4}}{4}\right]_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}+\frac{1}{2}\left[2 y-\frac{32}{3}+4-2+\frac{4}{3}-\frac{1}{4}\right] \\
& =\frac{1}{6}+\frac{1}{2}\left[8-\frac{12}{3}+48-24+16-3\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}+\frac{1}{2}\left[\frac{96-128+48-24+16-3}{12}\right] \\
& 9
\end{aligned}
$$

$$
=\frac{1}{6}+\frac{5}{24}=\frac{9}{24}=\frac{3}{8} \text { Ans. }
$$

Q3 (b) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes

$$
y+z=3 \text { and } \mathbf{z}=\mathbf{0}
$$

Answer

u, b som.

$$
\begin{gather*}
x^{2}+y^{2}=4 \tag{i}\\
y+z=3 \tag{11}\\
2=0 \tag{-111}
\end{gather*}
$$

(i) 2 varies from 0 to $3-y$
(ii) y varies from $-\sqrt{4-x^{2}}$ to $\sqrt{4-x^{2}}$
(iii) x varies from -2 to +2

The required volume
$=\int_{-2}^{+2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{3-y} d x d y d z$
$=\int_{-2}^{+2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}[z]_{0}^{3-y} d x \cdot d y$
$=\int_{-2}^{+2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x}}[3-y] d x d y$

$=\int_{-2}^{+2}\left[3 y-\frac{y}{2}\right]_{-\sqrt{4-x^{2}}} d x$
$=\int_{-2}^{+2}\left[3 \sqrt{4-x^{2}}-\frac{4-x^{2}}{2}+3 \sqrt{4-x^{2}}+\frac{4-x^{2}}{2}\right] d x$
$=6 \int_{-2}^{+2} \sqrt{4-x^{2}} d x=6\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{-2}^{+2}$
$=6\left[2 \sin ^{-1} \frac{2}{2}-2 \sin ^{-1} \frac{-2}{2}\right]=12\left[\frac{\pi}{2}+\frac{\pi}{2}\right]-12 \pi \quad$ Ans.
\quad local $=8$ moses.
Q4 (a) Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$

Answer

Q4 (b) Determine the rank of the following matrices
(i) $\left[\begin{array}{ccc}1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22\end{array}\right]$
(ii) $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$

Answer

Q5 (a) Find the approximate value of the root of the equation $x^{3}+x-1=0$ near $x=1$, using the method of Regula-Falsi two times.

Answer
Som

$$
\begin{aligned}
& f(x)=x^{3}+x-1=0 \\
& f(1)=1+1-1=+1 \\
& f(.5)=(-5)^{3}+(.5)-1=-.375
\end{aligned}
$$

The root lies between 15 and 1 . Let $x_{1}=0.5$ and $x_{2}=1$

$$
\begin{aligned}
x & x_{1}=0.5 \text { and } x_{2}=1 \\
x & =\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \text { or } x=\frac{0.5 f(1)-1 . f(0.5)}{f(1)-f(0.5)} \\
& =\frac{0.5(1)-1(-0.375)}{1+0.375}=0.64
\end{aligned}
$$

Now, $f(0.64)=-0.0979$ and $f(1)=1$
\therefore Root lies between 164 and 1

$$
\begin{aligned}
& x_{1}=0.64 \text { and } x_{2}=1 \\
& x=\frac{0.64 f(1)-1 f(0.64)}{f(1)-f(0.64)}=\frac{0.672+0.0245}{1+0.0245}=0.6822
\end{aligned}
$$

Q5 (b) Express the following system of equations in matrix form and solve them by the elimination method due to Gauss:

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{3}+x_{4}=6 \\
& 6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36 \\
& 4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=-1 \\
& 2 x_{1}+2 x_{2}-x_{3}+x_{4}=10
\end{aligned}
$$

Answer

The equation are expressed in matrix as,

$$
\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
6 & -6 & 6 & 12 \\
4 & 3 & 3 & -3 \\
2 & 2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
36 \\
-1 \\
10
\end{array}\right] \text { or }\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
0 & -9 & 0 & 9 \\
0 & 1 & -1 & -5 \\
0 & 1 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
18 \\
-13 \\
4
\end{array}\right] \begin{aligned}
& R_{2}-3 R_{1} \\
& R_{3}-2 R_{1} \\
& R_{4}-R_{1}
\end{aligned}
$$

θ
$\left[\begin{array}{cccc}2 & 1 & 2 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & -5 \\ 0 & 1 & -3 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}6 \\ -2 \\ -13 \\ 4\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{-9}$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
0 & 1 & -3 & 0
\end{array}\right]\left[\begin{array}{ccc}
x_{4}
\end{array}\right]} \\
2
\end{array} \frac{2}{1} 1\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
0
\end{array} 00-1-1-4 ~\left[\begin{array}{c}
6 \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
-11 \\
6
\end{array}\right] R_{3}-R_{2}-R_{2}\right.
$$

$$
\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & -4 \\
0 & 0 & 0 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
-11 \\
39
\end{array}\right] R_{4}-3 R_{3}
$$

$$
\begin{equation*}
2 x_{1}+x_{2}+2 x_{3}+x_{4}=6 \tag{i}
\end{equation*}
$$

$$
x_{2}-x_{4}=-2
$$

$$
-x_{3}-4 x_{4}=-11
$$

$$
13 x_{4}=39 \text { or } x_{4}=3
$$

Putting the value of x_{4} in (iii) weget

$$
-x_{3}-12=-11 \text { or } x_{3}=-1
$$

luting the value of x_{4} in (iii) we get

$$
x_{2}-3=-2 \text { or } x_{2}=1
$$

Substituting the value of x_{4}, x_{3}, x_{2} in (1) we get

$$
\begin{aligned}
2 x_{1}+1-2+3 & =6 \text { or } 2 x_{1}=4 \text { or } x_{1}=2 \\
\therefore x_{1} & =2, x_{2}=1, x_{3}=-1, x_{4}=3 \text { Ans }
\end{aligned}
$$

Q6 (a) Solve the differential equation $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$ where $D \equiv \frac{d}{d x}$

Answer
some
To find Complementary function C.F
Its A. $A \quad \therefore(D-2)^{2}=0, \quad \therefore \quad D=2,2$
Thus $C \cdot F \cdot=\left(C_{1}+C_{2} x\right) e^{2 x}$
To find Particular integral P.I.

$$
\text { To find }=8\left[\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}} \sin 2 x+\frac{1}{(D-2)} x^{2}\right]
$$

Now, $\begin{aligned} \frac{1}{(D-2)^{2}} e^{2 x} & =x^{2} \cdot \frac{1}{2(1)} e^{2 x} \\ & =\frac{x^{2} e^{2 x}}{2}\end{aligned}\left[\begin{array}{l}\because \text { by putting } D=2, \\ (D-2)^{2}=0,2(D-2)=0\end{array}\right.$

$$
=\frac{1}{8} \cos 2 x
$$

$$
\text { and } \frac{1}{(D+2)^{2}} x^{2}=\frac{1}{4}\left(1-\frac{D}{2}\right)^{-2} \cdot x^{2}
$$

$$
=\frac{1}{4}\left[1+(-2)\left(\frac{D}{2}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{D}{2}\right)^{2}+\cdots\right] x^{2}
$$

$$
=\frac{1}{4}\left[1+D+\frac{3 D^{2}}{4}+\cdots\right] x^{2}
$$

$$
=\frac{1}{4}\left[x^{2}+2 x+\frac{3}{2}\right]
$$

Thus, P.I. $=4 x^{2} e^{2 x}+\cos 2 x+2 x^{2}+4 x+3$
Hence the complete solution,

$$
y=\left(c_{1}+c_{2} x\right) e^{2 x}+4 x^{2} e^{2 x}+\cos 2 x+2 x^{2}+4 x+3
$$

Ans:

Q6 (b) Solve the equation, $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$

Answer

Cr.7.6. Som:
This in a Cauchy's homogeneousdinem.
Put $x=e^{t}$, i.. $t=\log x$, so that,

$$
\begin{array}{r}
x \frac{d y}{d x}=D y, x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y \\
\text { where } D=\frac{d}{d t}
\end{array}
$$

Then the given equation becomes

$$
\begin{align*}
& \text { he given equation becomes } \tag{1}\\
& {[D(D-1)-D+1] y=t \text { or }(D-1)^{2} y=t}
\end{align*}
$$

which in a Linear equation with constant coefficients, Sit's A.E. $\hat{n}(D-1)^{2}=0$, whence $D=1,1$ $\therefore C . F=\left(C_{1}+C_{2} t\right) e^{t}$ and

$$
\begin{aligned}
P I=\frac{1}{(D-1)^{2}} t & =(1-D)^{-2} t \\
& =\left(1+2 D+3 D^{2}+\cdots\right)
\end{aligned}
$$

$$
=t+2
$$

Hence the solution of (1) $\hat{n} y=\left(c_{1}+c_{2} t\right) e^{t}+t+2$ or Putting $t=\log x$ and $e^{t}=x$, we get $y=\left(c_{1}+c_{2} x \log x\right) x+\log x+2$ as the read.
Solution of (1)

Q7 (a) Obtain the series solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$

Answer

sols:

Substituting $y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots$ - (1) $\frac{d y}{d x}=m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{m+1}+\cdots$ and $\begin{aligned} & \frac{d^{2} y}{d x}=m a_{0} x \\ & d x^{2}=m(m-1) a_{0} x^{m-2}+(m+1) m a_{1} x^{m-1}+(m+2)(m+1) . \\ &-a_{2} x^{m}+\cdots .\end{aligned}$ in the given equation, we obtain
$x\left[m(m-1) a_{0} x^{m-2}+(m+1) m a_{1} x^{m-1}+(m+2)(m+1) a_{2} x^{m}+\cdots\right]$

$$
\begin{aligned}
& \text {-1) } a_{0} x^{m-2}+(m+1) m a_{1} x \\
& +\left[m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{m+1}+\cdots\right]
\end{aligned}
$$

$$
+x\left[a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots\right]=0
$$

The lowest power of x is x^{m-1}. Its coefficient equated to zero gives $a_{0}[m(m-1)+m]=0$

Fe, $\quad m^{2}=0$ as $a_{0} \neq 0, \therefore m=0$
The coefficient of x^{m}, x^{m}, \ldots, equated tozenogire

$$
a_{1}[(m+1) m+m+1]=0, \text { ie } a_{1}=0
$$

$$
\begin{aligned}
& a_{1}[(m+1) m+m+1]=0, \text { Le } a_{1}=0 \\
& a_{2}(m+2)^{2}+a_{0}=0, a_{3}(m+3)^{2}+a_{1}=0, a_{4}(m+4)^{2}+a_{2}=0
\end{aligned}
$$

and so on.
clearly, $a_{3}=a_{5}=a_{7} \cdots=0$
Also, $a_{2}=-\frac{a_{0}}{(m+2)^{2}}$
$a_{4}=-\frac{a_{2}}{(m+4)^{2}}=\frac{a_{0}}{(m+2)(m+4)^{2}}$ eff
$\therefore y=a_{0} x^{m}\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}}-\frac{x^{6}}{\left.(m+2)^{2}(m+4)\right)^{2}(m+6)^{2}}\right.$

$$
+\cdots]
$$

Putting $m=0$, the first solution is

$$
\begin{aligned}
& \rho m=0 \text {, the first solution } n \\
& y_{1}=a_{0}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2}-4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2}-6^{2}}+\right.
\end{aligned}
$$

This gives only one solution instead of taro. To get the second, differentiate (11) partially wrest m

$$
\frac{\partial y}{\partial m}=y \log x+a_{0} x^{m}\left\{\frac{x^{2}}{(m+2)^{2}} \frac{2}{m+2}-\frac{x^{4}}{(m+2)^{2}(m+4)^{2}}\left[\frac{2}{m+2}+\frac{2^{2}}{m+4}\right]\right.
$$

$$
\begin{aligned}
& \text { :The second } \quad \text { coin } \quad \text { in } y=\left(\frac{\partial y}{\partial m}\right) m=0 \\
& =y \cdot \operatorname{cog} x+a_{0}\left\{\frac{1}{2^{2}} x^{2}-\frac{1}{2^{2} \cdot 4^{2}}\left(1+\frac{1}{2}\right) x^{4}+\frac{1}{2^{2} \cdot 4^{2} \cdot 6^{2}}\right\} \\
& \left(1+\frac{r}{2}+\frac{r}{3}\right) \times \frac{6}{2}+1 \mathrm{~N} \\
& \text { Hence the complete solution is } \\
& y=c_{1} y_{1}+c_{2} y_{2} \\
& \text { ce } y=\left(c_{1}+c_{2} \log x\right)\left[1-\frac{1}{2^{2}} x^{2}+\frac{1}{2^{2}-4^{2}} \cdot x^{4}-\frac{1}{2^{2}-4^{2}-6^{2}} x^{6}+\cdots\right] \\
& \left.+c_{2}\left\{\frac{1}{2^{2}} x^{2}-\frac{1}{2^{2}-4^{2}}\left(1+\frac{5}{2}\right) x^{4}+\frac{1}{2^{2} \cdot 4^{2} \cdot 6^{2}}\left(1+\frac{1}{2}+\frac{1}{3}\right) x \leqslant\right\}\right] \\
& c_{2}=c_{0} c_{1}
\end{aligned}
$$

Q7 (b) State and prove orthogonality of Legendre polynomials.

Answer

```
1 som.
We know that the solution of
\[
(1-x)^{2} u \prime-2 x u^{\prime}+m(m+1) u=0 \text { (1) }
\]
    and \(\left(1-x^{2}\right) v^{\prime \prime}-2 x v^{\prime}+n(n+1) v=0\) (2) (2)
    are \(\lim (x)\) and \(\operatorname{Pn}(x)\) respectively and subtracting, we get
roultiplying (1) by u and (2) by 14 and subtracting, we ged
    \(\frac{d}{d x}\left[\left(1-x^{2}\right)\left(u^{\prime} v-u v^{\prime}\right)\right]+(m-n)(m+n+1) u v=0\)
    Now integrating from -1 to 1 , we get
        \((m-n)(m+n+1) \int_{1}^{1} u v d x=\left|\left(1-x^{2}\right)\left(u v^{\prime}-u^{\prime} v\right)\right|_{-1}^{1}=0\)
            Hence \(\int_{-1}^{1} \operatorname{lm}(x) \ln (x) d x=0\). \(\quad(m \neq n)\)
    This is knotion an the orthogonality property of legendre
Polynomials
Where \(n=n\), we have from Rodrigués forme
\(=\left|D^{n}\left(x^{2}-1\right)^{n} D^{n-1}\left(x^{2}-1\right)^{n}\right|_{-1}^{1}-\int_{-1}^{1} D^{n+1}\left(x^{2}-1\right)^{n}\).
    \(D^{n-1}\left(x^{2}-1\right)^{n} d x\)
Sine \(D^{n-1}\left(x^{2}-1\right)^{n}\) han \(x^{2}-1\) on a factor, the first term
```

Q8 (a) Obtain Fourier series for the function

$$
f(x)=\left\{\begin{array}{cc}
\pi x, & 0 \leq x \leq 1 \\
\pi(2-x), & 1 \leq x \leq 2
\end{array}\right.
$$

Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots . . . \infty=\frac{\pi^{2}}{8}$
Answer Page numbers 406 from text book

Q8 (b) Express $f(x)=x$ as a half-range cosine series in $0<x<2$

Answer

Som:

The gra of $f(x)=x$ in $(0,2)$
is the line OA. Let us extend
the function $f(x)$ in the interval
$(-2,0)$ shown by the line $O B^{\prime}$
So that the new function n symmetrical $\downarrow_{y^{\prime}}$
about the x-axis and, therefore, represent 5 an even function in $(-2,2)$ in sig.

Hence the fourier series for $f(x)$ over the full period $(-2,2)$ will contain only cosine terms given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{2}
$$

where $a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2} x d x=2$

$$
n=1
$$

and

$$
\begin{aligned}
a_{n} & =\frac{2}{2} \int_{0}^{2} f(x) \cos \frac{n \pi x}{2} d x \\
& =\int_{0}^{2} x \cos \frac{n \pi x}{2} d x \\
& =\left|\frac{2 x}{n \pi} \sin \frac{n \pi x}{2}+\frac{4}{n^{2} \pi^{2}} \cos \frac{n \pi x}{2}\right|_{0}^{2} \\
& =\frac{4}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

P.T.O.

Thus $a_{1}=-8 / \pi^{2}, a_{2}=0, a_{3}=-8 / 3^{2} \pi^{2}, a_{4}=0$,

$$
a_{5}=-8 / 5^{2} \pi^{2} \mathrm{efc}
$$

Hence the desired fourier series for $f(x)$ over the half - rape $(0,2)$ is umps. the half - rape $(0,2)$ is
$f(x)=1-\frac{8}{\pi^{2}}\left[\frac{\cos \pi x / 2}{1^{2}}+\frac{\cos 3 \pi x / 2}{3^{2}}+\frac{\cos 5 \pi x / 2}{5^{2}}+\cdots\right]$ Ans

Q9 (a) State and prove Convolution theorem for Fourier transforms.

Answer Page numbers 777 from text book

Q9 (b) Solve by z-transform $y_{k+1}+\frac{1}{4} y k=\left(\frac{1}{4}\right)^{k}[k \geq 0, y(0)=0]$

Answer

i Som:

$$
y_{k+1}+\frac{1}{4} y_{k}=\left(\frac{1}{4}\right)^{k}
$$

Taking z-transform of both sides of (i), we get

$$
z\left[y_{k+1}+\frac{1}{4} y_{k}\right]=z\left[\left(\frac{1}{4}\right)^{k}\right]
$$

$$
2\left[y_{k+1}\right]+2\left[\frac{1}{4} y_{k}\right]=2\left[\left(\frac{1}{4}\right)^{k}\right]
$$

$$
z y(z)-z y(0)+\frac{1}{4} y(z)=\frac{1}{1-\frac{1}{4} z^{-1}} \quad\left[\because|z|>\frac{1}{4}\right]
$$

$$
z y(z)-0+\frac{1}{4} y(z)=\frac{1}{1-\frac{1}{4} z^{-1}}
$$

$$
\left(z+\frac{1}{4}\right) y(z)=\frac{1}{1-\frac{1}{4} z^{-1}}
$$

$$
y(z)=\frac{1}{z+\frac{1}{4}} \times \frac{1}{1-\frac{1}{4} z^{-1}}=\frac{z^{-1}}{1+\frac{1}{4} z^{-1}} \times \frac{1}{1-\frac{1}{4} z^{-1}}
$$

$$
=\frac{-2}{1+\frac{1}{4} z^{-1}}+\frac{2}{1-\frac{1}{4} z^{-1}}
$$

$$
y_{k}=z^{-1}\left[\frac{-2}{1+\frac{1}{4} z^{-1}}\right]+z^{-1}\left[\frac{2}{1-\frac{1}{4} z^{-1}}\right]
$$

$$
\begin{aligned}
& =z^{-1}\left[-2\left(1+\frac{1}{4} z^{-1}\right)^{-1}\right]+z^{-1}\left[2\left(1-\frac{1}{4} z^{-1}\right)^{-1}\right] \\
& =-2\left(-\frac{1}{4}\right)^{k}+2\left(\frac{1}{4}\right)^{k}
\end{aligned}
$$

$$
=-2\left(-\frac{1}{4}\right)^{k}+2\left(\frac{1}{4}\right)^{k}
$$

Ans

Text Book

Higher Engineering Mathematics, Dr. B S Grewal, 41 ${ }^{\text {st }}$ Edition 2012, Ghana Publishers, Delhi.

